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1 Introduction:

The QR algorithm [i1] is the standard me_.hod for c_mpufing the ,;ge:_values of a

gene.,--_/dense matrix on a trad/tional sequenfiM c_mpute:. Vvqth the aAve.ut of par-

allel co mpute:_, a v-_-de_ of par'_el dganva/ue algorithms have bee_n proposed. For

he.nm_/mu =_tric_, the=e have bezu two "dhYe:ent Zppr_a_kes. In the _'st approach,

the matrix is re_luced to _/ddagonal form _s in the QI:L a/goritkn_ The dg_-/v'alues

of the tddiagonal matrix are found using d_her _he divide and _nqu_ method [41,

or mulffsection [14].-The other approach _ be_' to rdco_e thein.herent p_l'

Idism in the 7acobi method [13,10],which w_s the standard algorithm for the problem

•b_ore the cihcove.-'yof the QR..algo_tbm_ Many p_ Jacob[ methods for he.n:/-

.fian matrices have been propose/and implemem_ec[ [2,1,23]and conve__e--_ceof these

methods has be_-n proved [8_16,2_].

For ge._rl, non-hermitian matrices, _:te_n_ons of the divide and conque.r or mul-

tise_ion algo_tkms are not known. IV[any attempts have 5ee_u made to e-.'ctendthe

Jacobi method to the gemer_l case [22._,3,25,3] and some of these are r_ted for par-

a_d imple.._entation [22_5,25]. However, L_e par-_ a.lgo_th_ do not posses the

quad_tic conve:gence propes_y typical of the .Tacobimethod for ha.-'mitia.unmtrices.

There have also be,'__ attempts _t paz-_g the QK a/gori£h_ its le_ [26] and work

along theme limes may prove to he fruitful

In _kis pape: we devdop a par_/ld Ja_bi-t_e algoz_km for g---_e.--_I complex m_-

_ces base-/on a method _ int':oducedby gbar/eiu [3]and prove eh_,tthe _/gor_h_

conve:ges quadr_ticn/ly.

The r_t Of the paper is organized a_ foHow_. In §2 we di_cu=s Ja_bi-tike methods

in g--ue.--_. In _S the new par-a/Id algorithm _ d_cz_ned in de_=iL In _4 a proof of ulti-

mate quadratic cmnvergeaca for the algozi_hm isprom',ted- Finally in _5 e.-'cpe_-iznemtal

results aze.pre=euted and analyzed.

2 Jacobi-Like IVfethocls:

A Jacobi-tike method for redu_g a ma_b: to c_nd_ed form pe.-='orms a sequence

af s_nii_7 t_orm_._io_ --

= = 0,1,2....

wh_e A_ = A is the given n x 7:m_trix and e_-h of the M_, k = 0,1, ... is identicM

to the u_t na_ excep_ in the positions (2_,q_), (q_,P_), (2_,P_) and (g_,q_).

The potential for parallel imple_e=_t.ation _:ises as follows. If we have a pair

tr'_or=m._ioms

(2)

and the indic_ p_, q_,,p_.,, q_ are 4Lhtinct, the m._b_c_s M_ a_d M_., commute.

Therefore the _orzna.tions can be applied in any orde: wi_h the same _.t. In

particular, they c.mu be applied in p_r"_le_ firstto the columns (from the right),and

theu to the rows (from the I_%). For ce.:_ain choices of the Sequence qf pai.,_ (p._, q;¢)

a.s many as ./2 _-an_orn_tions ca_ he applied in pax-_d [2,16].

At each ite.--_t/on, the tz-a.zmfon:nationM_ is chose.n, to _te ca,"taiu deme_nts

of the m_-z4.x A_. The _,_ih;1;_fions proc_-_d in 'sw_ps', whe.-m one sweep cmmi_ts of

occ_s _ctly once.
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When A is hermitian, it is possible to choose the transformation Mk to be a

unitary plane rotatipn that annihilates the (Pk, qk) and (qk,Pk) elements of Ak [8].

The sequence Ak always converges to a diagonal matrix (in practice), and under

certain conditions convergence can be proved [8,16,24].

If the matrix A is non-hermitian (and in general non-normal), two classes of

Jacobi-like methods have been proposed. In the first type of algorithm, Mk is re-

stricted to be a unitary plane rotation and is chosen to annihilate the (qk, Pk) element

of Ak [6,25,3]. For most matrices A0, the sequence Ak is observed to converge to an

upper triangular matrix (Schur form). Such methods will be referred to as Schur type

methods. Some of these are amenable to parallel implementation [6,25].

The other class of algorithms diagonalize a diagonalizable matrix using both uni-

tary and non-unitary transformations [5,21]. Mk is chosen to minimize the magnitude

of the (Pk, qk) and (qk,p,) elements of A as well as reduce IIAI[, the Euclidean (or

Frobenius) ngrm of A. (IIAII 2 = _;i lao'l 2-) To explain why the norm of A is reduced,
we recall the following result.

Lemma 2.1 For any square matrix A,

inf IIM- AMII 2 - IA,21 (3)
M

i--1

where M is non-singular and Ai are the eigenvalues of A.

Proof: The proof is due to Mirsky [17]. Let QTAQ = A + T be the Schur decom-

position of A. (Here A is a diagonal matrix containing the eigenvalues of A on the

diagonal, and T is a strictly upper triangular matrix.) Let D = diag(1, e, e2,..., e"-1)
where 0 < e < 1

rAQDll 2 = IIAII2 +  lt,jl% 2u-O

_< IIAII + dllTII '.

Since e can be an arbitrarily small positive number, it follows that the right hand

side of (3) is less than the left hand side. The opposite inequality also follows by the

Schur decomposition of M-IAM, so (3) is proved. []

This result can be used to show that reducing norm of A brings it closer to a

normal matrix, which can be diagonalized by unitary transformations alone. This

is also equivalent to reducing the size of elements of the matrix C - AA* - A'A,

the departure from normality [19]. This type of algorithm will be referred to as a

norm-reducing method.

These two classes of methods differ in two important respects. First, the conver-

gence behavior is markedly different. The norm-reducing methods display ultimate

quadratic convergence for most matrices, and a proof of quadraticconverger_ce can be

obtained assuming the matrix is diagonalizable [20]. The Schur methods exhibit only



linear convergencein general [6], and no proofs of global convergenceor asymptotic
convergencerates are known for generalmatrices.

On the other hand, computing the transformation Mk in the Schur methods re-

quires knowledge of only the (Pk, qk), (qk,Pk), (p_,Pk) and (qk, qk) elements of A,

whereas for the norm-reducing methods the entire pk'th and qk'th row and column of

A are required. Besides being more expensive, this has a more serious consequence

in that it destroys parallelism. Although the transformations Mk can still be applied

in parallel as described earlier, the effect is different from applying them sequen-

tially, since the application of one transformation affects elements used to compute

another. As a result, it is no longer possible to show that ]]A[[ is always reduced by

the transformation [5], and the quadratic convergence proof [20] no longer applies.

Sameh [22] developed a parallel version of the norm reducing algorithm for real

matrices [7]. Sameh showed how to compute n/2 transformations that could be

applied in parallel to a real matrix A and would always result in a reduction of ]IAI].

Sameh also proved that the algorithm converged to a normal matrix. So for real

matrices, we could use Sameh's algorithm to reduce the matrix to a normal matrix

and then diagonalize the resulting matrix by the Jacobi method for normal matrices

[9] (which uses complex arithmetic, but converges quadratically). However, we do

not know of any investigation of the rate of convergence of Sameh's algorithm to a
normal matrix.

In this paper we develop a parallel algorithm for general complex matrices but

take a different approach from that of Sameh, combining the norm-reducing and

Schur methods. We compute the transformations Mk as in the original norm-reducing

methods [5,21], except for the following differences:

1. Instead of minimizing the magnitude of the (pk, qk) and (qk, pk) elements of A,

we merely annihilate the (qk,Pk) element as in the Schur methods.

2. _Ve stop when we have reached triangular form, as opposed to diagonal form.

3. _¥e compute and perform transformations in parallel.

We will show that parallelism can be achieved without sacrificing the property of

quadratic convergence. Further, because we only seek triangular form, the method

does not try to dlagonalize some obviously defective matrices unlike the original

norm-reducing methods (e.g. a matrix in Jordan canonical form).

3 Description of the Algorithm

For each similarity transformation Mk in (1), there is a pair (Pk, qk), Pk < qk, that

identifies the submatrix where Mk differs from the identity, o
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The correspondingelementsof Ak will be called pivot elements and the pair (Pk, qk)

will be called the pivot of the transformation. In what follows we will omit the

subscript k when it is clear that only one pivot (Pk, qk) = (P, q) is involved.

Each transformation M is one of the following three types of transformations.

Unitary Transformation:

The unitary transformation U ={ulj} with pivot (p, q) has the following structure

in the positions where it differs from the identity.

( )( )Upl0 Upq .-- COS Z --ei°sin z

uqp %q e -is sin z cos z '

where z and 0 are real.

The following choice of z and 0 ensures that the (q,p) element of A' = UTAU is

zero [6]. Let

d,q= (aqq- a,,),

dm,x = dvq .4- ed_q + 4aw%v, (4)

where the sign is chosen to achieve the largest absolute value. Then the parameters

z and 0 are given by

2eiS aqp

tan z = d,..= ' (5)

where 0 is chosen to make the value of tan z real.

In practice we need to bound the angle z to avoid migration of large elements

from the upper triangleof the matrix to the lower part. We impose the bound

Itanz[ < 1.

(i.e.,if [tan:r] > I, we set it to i.) Not using such a bound causes slowing of

convergence in the earliersweeps. This issimilar to the bound used by Eberlein [6].

Shear Transformation:

The shear transformation 5"={s_j} with pivot (p,q) has the following structure

in the positions where itdiffersfrom the identity.

Sqp sqq ie -ia sinh y cosh y ' (6)

where y and cr are real.

Let A' = S-1AS. The parameters _/and ct are chosen to zero the first order terms

in a[[A'[[_/0y and O[]A'[[2/Oot. It can be shown that'with this choice, ]]A'[[ _< ]]A[]

[5].
Let

C.q = _ {I,,.jI = + I,,_1 _ + I,,j.l = + I,,_l=}, " (7)
J#v,q



_vq = ei°%v + e-i°avq, (9)

n _

q,, = _(%ja;j - aMsq), (lO)
j=l

Note that c_ is just the (p, q) element of C = AA" - A'A. Then the parameters

and y are given by

= arg(%,) - r/2, (11)

-Iq,,I (12)
tanh y = 2([dv,[2 + [_v,[2 ) + Gv" .

The effect of this transformation is also to reduce the size of the (p, q) element of

C, the departure from normality [5]. Clearly, if c.vq is zero, the above transformation

reduces to the identity. However, ][A[[ may still be non-normal with C having large

diagonal elements. The following diagonal transformation reduces the size of the

diagonal elements of C [21,18].

Diagonal Transformation:

The diagonal transformation D with pivot j is the identity matrix except for the

jth diagonal element, which is ti. Let

Then choosing

minimizes the value of

gj = latjl 2 ,
#J

h i = lair[ 2 ,

It can be shown [18] that

IID71AD¢I[= = llAII2- (aj - hA2. (13)

Note that this transformation does not affect the diagonal elements of A, and therefore

reduces the norm of the off-diagonal part of A, in addition to reducing []A[[.

In practice we do not wish the matrices D to become too ill-conditioned, so we

impose the restrictions

1/r < tj < r (14)
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where r is a constant.

Rotation: A rotation transformation R with pivot (p,q) is the composition of a

shear and a unitary transformation, SU, each with the sazne pivot(p, q). The unitary

transformation U is computed using the elements of the matrix A = S -1AS.

Commuting Sequence: A sequence of pairs (pk, qk) C={(p,q), 1 < p < q <_ n}

such that p_, ql,P2, q2...P,,,,q,,, are distinct integers is called a commuting sequence

of pairs. The methods described in [16,24] allow..us to construct many commuting

sequences where m is either n]2 or (n- 1)]2.

Rotation-set: A rotation set is the composite transformation T

T = R1R2R3....P_, (15)

where Rk is a rotation with pivot (pk, qk), and the sequence {(pk, qk)} is a commuting

sequence.

Parallel. kRotation Set: In order to apply a rotation set T by computing T-1AT

correctly according to the formulas (4) - (12), we would have to compute and apply

each of the transformations Rk in "sequence, since the application of one transforma-

tion affects the elements needed to compute the next. Instead, we will compute each

of the transformations Rk using the original matrix A. Since the pairs (Pk, qk) consist

of distinct integers, the resulting transformations/_k can all be computed and applied

in parallel. We will call the resulting composite transformation T a parallel rotation

set with pivot sequence (pk, qk).

T = R,h_...E,. (16)

Parallel Ordering: Let O be a sequence (Pk, qk) of N = n(n- 1)/2 pairs such

that O is a concatenation of s commuting sequences. Further let each pair (p,q),

1 _< p < q < n occur exactly once in the sequence O. Then O is called a parallel

ordering.

Two examples of parallel orderings are shown in Fig.1. The matrices in the figure

represent parallel orderings by indicating the commuting sequence to which each pair

(p, q) belongs. The commuting sequences are numbered in the order they appear in

the parallel ordering. These two orderings were introduced by Brent and Luk [2] and

Luk and Park [16] respectively. Many other parallel orderings have been introduced

as well [24,15]. The modulus ordering will figure in the quadratic convergence proof,

so we define it now.

Modulus Ordering: A parallel ordering is called a modulus orderings if the pair

(p, q) is in the I(p, q)th rotation set of the ordering, where

I(p, q) = 1 + (p + q - 3) mod n. (17)

Sweep: One sweep of a paralle: ordering 0 is a transformation composed of s

parallel rotation sets and n diagonal transformations. Each parallel rotation set has as



(x 15423 x 12345
x 3254 x 3456

x 1 42 x 56 1

x 35 x 1 2

xl x3

X X

Brent Luk Ordering Modulus Ordering

j Figure 1: Parallel orderings

its pivot sequence one of the commuting sequences that comprise the parallel ordering

O. The value of s will be either n or n - 1 depending on the parallel ordering used.

For example, in the Brent-Luk ordering s = n - 1, whereas in the Modulus ordering

s = n. A sweep SW is defined as

SW= T1DI_'2D2...T,__IDn_ID,_ (18)

for the case s = n - 1 and

SW = _'ID,7'2D2...f,_D,_

if s = n. Each diagona! transformation Dp above has the pivot jp, where {jp} is a

permutation of {1... n).

So at the end of a sweep, every pair (i,j) has been covered by a unitary and

shear transformation, and every row and column has been covered by a diagonal
transformation.

Parallel Norm Reducing Jacobi Method: We continue to perform sweeps

until the following convergence criterion is met. Let

Ak = L, + H, + Rk

where Lk is strictly lowe r triangular, Hk is diagonal and Rk is strictly upper triangular.

We stop when

IIX-.,kll< (19)

(e is the value of machine precision.and the norm Used iS the Euclidean norm.) This is

oniy one of many possible Convergence tests that ca.n be Used. The ultimate quadratic

convergence of the algorithm allows for considerable freedom in this choice.

Parallel :Implementation: The paraUel norm reducing Jacobi algorithm can be

implemented on a square grid of n2/4 processors as follows. Each processor holds

four matrix elements. The n/2 diagonal processors are responsible for computing the

rotation parameters (elements of Rk). The computation of the %q's and Gpq's is done

8



with each off-diagonal processor computing the required terms and sending them to

the appropriate diagonal processor. The rotations are broadcast from the diagonal

processors to the appropriate off-diagonal processors after which all the processors

apply the rotations to the elements of the matrix. This constitutes one rotation set

with the elements apkq_ , k - 1... n/2 being the off-diagonal elements residing in the

diagonal processors. Next the processor in the (1,1) position performs the appropriate

diagonal transformations. Finally all the processors exchange data using the scheme

given by Brent and Luk [2], and the above process is repeated n - 1 times. It can

easily be verified that this implements a sweep as defined in (18). (Other parallel

orderings [16,24] may be implemented by using an appropriate data exchange step.)

At the end of each sweep, the convergence test is carried out. The computation

of IILkll can also be done in parallel. It is clear that one sweep of the algorithm

takes O(n log n) time when implemented as described above (since accumulating the

row and column information for each rotation set can be done in O(log n) time). In

§5 it wiU be noted that O(log n) sweeps are required for random matrices, giving a

complexity of O(n log 2 n) for the parallel algorithm.

Eigenvectors: The transformations Mk are accumulated in a matrix P. In

§5 it will be noted that the final matrix Aj, we obtain on convergence is always

diagonal. This allows us to read off the eigenvectors from the columns of the matrix

P. Accumulating the transformations can also be done in parallel along with the
iteration.

4 Theorems on Quadratic Convergence:

4.1 Quadratic Convergence for Diagonalizable Matrices:

We now show that the parallel norm reducing Jacobi method converges quadratically

in the later stages of the iteration. Note that this does not say anything about global

convergence, but only describes the rate of convergence if the algorithm does converge.

First we introduce the notation. Let A be the diagonalizable matrix we are working

with and A a diagonal matrix containing the eigenvalues of A on the diagonal. If Z

is the transformation that diagonalizes A,
J

A = Z-1AZ. (20)

We divide A into a diagonal part D and an off-diagonal part E.

A=D+E.

Let A; be the eigenvalues of A, let 6 be the minimum separation between distinct

eigenvalues of A,

6 = min [A_- A./[. (21)

9



By the Bauer-Fike theorem [11], for each Ai, there is an element akk of D, such
that

[Aj- akk[ < [[E[[. (22)

If A is close to a diagonal matrix so that

6

IIEII< _,

then it follows from (22) that each diagonal element aqq of A is close to exactly one

eigenvalue A(aqq) of A,

l%+- A(a,,)l < IIEII.

We will say that aqq is affiliated to the eigenvalue A(%q).
Let

_ "r Ilhll
='--6 (23)

Theorem 1: Let the diagonalizable matrix A = A1 have distinct eigenvalues. Let

(20) hold. Let AN be the matrix obtained after applying one sweep of the parallel

norm reducing Jacobi algorithm to A1, using any parallel ordering. Let E1 and E+v

be the off-diagonal parts of A1 and AN respectively.

Suppose A1 has already been sufficiently diagonalized, so that

3-2-6

[[EI[[ _< 3672n2, (24)

Then,

IIE_¢II< K,(A,_,n,_)llElll 2.

where K2 is independent of iIEIIIand _ is the bound (14) on the size of the diagonal
transformations.

Theorem 2: Let A = At be a diagonalizable matrix. Let (20) hold. Let Ape be

the matrix obtained after applying two sweeps of rotation sets to A_ using a modulus

ordering (17). Let £:1 and EN be defined as in Theorem 1. Suppose At has already

been sufficiently diagonalized, so that

IIE,II_<_,_,, _. (25)

Also let A_ be permuted so that diagonal elements affihated to equal eigenvalues

occupy adjacent positions. Then

IIENII< .I_=(IIAII,'_,".,')IIE,II_-

where If2 is independent of IIE,II, and r is the bound (14) on the size of the diagonal
transformations.

10



Notice that in Theorem 2, when we allow multiple eigenvalues, we assume a par-

ticular parallel ordering while Theorem 1 holds for any parallel ordering. Further, in

Theorem 1 we can bound the error after one sweep whereas in Theorem 2 we bound

the error after two sweeps. The assumption that diagonal elements affiliated to equal

eigenvalues are in adjacent positions can be ensured by an appropriate permutation

of the matrix during the iteration.

Outline of proof: The structure of the proof is similar to proofs of quadratic

convergence of other Jacobi methods [20,9]. the argument is more involved here

because we have to consider the effect of performing transformations in parallel. The

outline of the proof is as follows.

1. It is shown that some of the angles x and y in (5), (12) are small if

IIEII = < 5/8. (26)
j"

2. It is shown that (26) can be maintained throughout the sweep if [IE0[[ is small

enough.

3. It is shown that after each unitary transformation, the apq element is almost

annihilated in addition to the aq_ element which is exactly annihilated.

4. Bounds for the entire sweep are computed using the above results.

Notation: Throughout the proof, E will refer to the off diagonal part of the

matrix A, Er to the off-diagonal part of At, etc..

4.2 Preliminary Lemmas:

We begin by stating some known results on the structure of an almost diagonal matrix

and the effect of a similarity transformation on the norm of a matrix.

If A has been permuted so that diagonal elements affiliated to equal eigenvalues

occupy adjacent positions on the diagonal, we can partition A as follows.

An AI_ ... AI,,, )

A= A2) A_2 ... A2,,, . (27)

i

Each Ajj has its diagonal element affiliated to equal eigenvalues.

Lemma 4.2.1: If A is partitioned as in (27) and

then for j = 1...m,

I lIE[I2
IIE sll IIAj;- AjlII 2 l/ '

11



Proof: Refer to Wilkinson [30]. []
Lemma 4.2.2:

IIA[I2- []AI[ 2 _< 4_][Ell _.

Proof: Refer to Ruhe [20]. []

Lemma 4.2.3 Let A' = S-1AS where S is a shear transformation defined by (6),

(11) and (12). Let the quantities Gpq, dpq, _pq and Cpq be defined by (7)-(10). Let I(pq

be defined by

g,, = +, - - (28)
Then

°J

- 2 sinh 2yGpq + 4 cosh 2ylm(Kme -_')

+ 2 sinh 4y([dpq]: + [_pq[2) _ 4 cosh 4ylm(d_q_pq), (29)

1 cOlIA'II2

sinh 2y Oa
= -2Re(Ke -'¢') + 4 sinh 2ylm(a'qp%,e -2'°)

+ 2cosh 2yae(_qame -'a - _qa,pg°).

and

c_ {_COIIA'II2 1 COIIA'II=}= COy sinh 2y cOa "

Proof: Refer to Eberlein [5] for (31) and Ruhe [20] for (29) and (30).

(30)

(31)

[]

4.3 Bounds on angles x and y:

By the definition (12) it can easily be shown that

Itanhy[ _<1/2. (32)

The bounds cosh2 y < 4/3 and sinh2 y < 1/3 follow. Refer to [5] for details.

The following Lemma may easily be shown using the method in [8].

Lemma 4.3.0: If [[E[] < _ then no rotation set can cause a diagonal element to

change the eigenvalue it is affiliated to in partition (27).

Proof: Refer to Forsythe and Henrici [8] and Ruhe [20]. [3

Therefore we can classify the pivot elements into two sets, depending on whether

or not the corresponding diagonal elements are affiliated to equal eigenvalues. Refer

to the partition (27) of A. We define the subset J of the parallel ordering O as follows.

J = {(pk, qk)[A(a_,,,pk ) g A(aqkqk)). (33)

12



Lemma 4.3.1: Suppose []E][ _< 6/8. Let the pivot (p,q) 6 d. Then the angles x

and y computed by (5) and (12) satisfy,

and

I sinhvl < 1.oIlIEII coshy < (1 +
k

J

811EII
Isinz[ _<_ 6

Proof: Consider dpq defined by (8). Since r E J,

32 [{_--J2[J_)< 1.01 ,63

Id,,,I> IA,,,,- .X,ol- I%,,- .X,,,,I-la,,- ),,,I > 6- 211Eli> -36

< I,_,,,d,,,I+ IK,,,,I

It can be easily shown using (9) that IGd ---v_llEII. By (28) and (10) we get

J#P,q

1

-< _ _ I%_1_+ I,,,_1_+ I,,_,,1_+ I,,_,1_.
.i¢=p,q ,

From this we get IK,,I _<IIEII2/2.

Therefore (34) becomes

1

[ tanh V[ =
2(Id,,,,l'+ I_,,,1')+ 5'p, - 214,,I=

where we have used the following relation from [5],

-I_,,I = X_Cd;g,_)- x,,,(g.,,-'o).

(34)

(35)

(36)

The remaining inequali ties follow from cosh V =(1-tanh 2Y)-{ and Isinh Vl'=-Icosh Vtanh Y[.
D

13

From the definition of z, (5)

2aqv

Since d=a_, given by (4) satisfies Id==l _>Id,_l, and la,,I _<IlZll,

Isin zl < l tan zl < 8 IIEI___J
- -3 /_

The hounds on y are proved by Ruhe [20] as follows. From the definition (12) of y,



4.4 Effect of one parallel rotation set:

Consider the parallel rotation set defined in §2 (16).

T = R1R2... R,_ = SIU1S2U2... S,,,U,,,.

(We have dropped the " notation.) Since the pivots (p,, q_) for the rotation set form

a commuting sequence,

T = $1S2... SmUIU2... U,,,. (37)

Notation: A = Ao is the matrix to which the rotation set is being applied.

Fort = 1...m,

A,. = $71 ...S[IAoS_ ...St = {a_ )} (38)

Further,"

_, = IIE,ll.

= U_ 1 ...U_'1S_I...S_'AoSt ...S,.,,UI...U,.,., = {_.('_)}' (39)
q

We will use the definitions (7)-(10) and (28) for the quantities c,_, Ct_, etc. The

use of the superscript (r) or " will denote that the quantity is computed using the

elements of A, or A respectively. We will need the norm

TL

IIAII== _ lakjl.
k,j=l

Note that for any matrix A, IIAII _<ilAII_. < nllAII.

Note that d (_) = d(°) since the pivots (p,, q,) form a commuting sequence. Sim-
prqr prqr

ilarly _(*) = _:(o) We will drop the superscripts for these quantities, so alp, q, = d (°)
_prqr _Prqr " prqr

etc. for all r.

In previous Lemmas we have assumed that e, < 6/8. However, er may increase

during a sweep. We need to bound the growth of ¢, during the parallel rotation set

so that we can then find conditions at beginning of the sweep that will ensure that

IIEII <__/8 holds throughout the sweep. To do this we will use the II I1_norm defined

above and bound the growth of IIE_llr,

Lemma 4.4.1: If IlEollr < g/8 then

IIE,,,llr< 4.611Eo11. (40)

If A has distinct eigenvalues we get the slightly sharper bound

IIEmll=_<2.SllE011. (41)

14



Proof: We first estimate the elements of E,_ that are not pivot elements in the

rotation set. We define _r for all r = 0... m,

_ = _la_)l k # J and (k,j) # (V,',q,') for any r.
kj

Let

So_

A' = S_X... S_IAo . (42)

Am = A'S1S2... Sin.

Consider the element a_°}. It is affected by only one of the shears S, in (42). The

akj cosh ,,(o) ;.(o) +,o,' = Y_"ki 4-,,kj_, sinhy_.

effect takes the form

where a(k°) is some other non-pivot element of Ao. If

[coshy,[ _<c and [sinhvr[ _<s for all r,

I,,gjl-<cl_°)l+ sla_)l•
If _' is defined analogous to g',,

• '= _ lag_l_<E(cla_°)l+ 8la_°)l),
kd td

where the sum taken over all non pivot pairs. But E laki[ = __, [fitk°)l, therefore

• ' < (c + s)_o.

By a similar analysis, _,,, <_ (c + s)_'. So,

• m < (c + s)2_0.

We now have to consider the pivot elements a(Zq)" and a_).

element with (p, q) = (p,, q_). It is affected by only one shear, S = ,5",.

calculation
_ia r l

a_m)= aCOrn,+ e _-_ sinh2_d,_+ sinh_y_,,}.
and

• i

a_ ) = a_°) + e-'°{-_ sinh2yd_,q + sinh: y_pq).

la_T)l+ la_T)l_,<la(°)lpq+ la_°p)1-4-[sinh 2ylldr_[-4- 21sinh =Yll_l.

Therefore

(43)

Consider one pivot

By direct

15



We substitute the value

-IcM)l
tanh y =

2(Id,,+l _ + lS, ql_) + C_°>"

for tanh y from (12). (The angle y is computed using the elements of Ao, hence the

use of the (0) superscript here.) Also, we write C(Oq)in terms of K(p°) and use (34). So,

{1"_)1+ 1,_')1< I,,¢,,'_)1+ ,,_°)1+ ¢osh=y I_,,+1+ ld,,,,Ij + 2sir'h=_'k%l"

Now we use the bounds c and s for I¢oshyl and Isinh yl. Also we use I_.+1< ta (°)_ +
--, pq,

I,:,_)1which follows from (9), and Id,,,I> 36/4.

4c=l/(_ml (44)• la_)l + I,.,})1< (1+ _' + 2+')(1_°)1+ la_21)+ 36

Define er as the sum of the magnitudes of the off-diagonal pivot elements,

er = _ d_') 1+ a¢_')I.
! prqr qrpr

T

By summing all the equations (44) for (p, q) = (p_, q_), r = 1... m, we get

4c_ v', ,..(o)
¢,,, < (1 + c_ + 2s2)¢o + -_- 2_, .,,p,+,l. (45)

T

Using (36) we can show that

_g (°) I < ItEoll2< IIEoll_.
I prqr --

T

Using this, the assumption IIEoll_._<6/8 and adding (43) and (45) we get

I1Emllr _<(1 + c2 + 2s 2 + c2/6 + 2cs)llEoll_..

Inserting the bounds from (32):we get (40). If A has distinct eigenvalues we can use

the bounds from Lemma 4.3.1 to get (4,1). []

Let G0 denote the value of ][E[] at the beginning of the sweep. Let e be the

maximum value of ]]E[] throughout a sweep of N rotation sets.

Lemma 4.4.2 If Go _< 6/8 then,

e _< n(4.5)Neo •

If A has distinct eigenvalues we get the smaller bound

_< n(2.8)N¢o

16



Proof: The diagonal similarity transformation cannot increase the value of }]E]J

by (13). Further, the unitary transformations cannot increase IIEII either (this can

easily be shown using (5) and the fact that the transformations U_ are unitary). The

results then follow from Lemma 4.4.1.. O.

Now we have bounded the growih of _,. We will use this in §4.5 and §4.6 to show

that _ < 6/8 holds throughout the sweep. For the moment we will continue to assume

it does.

The next step in the proof is the crucial step in establishing quadratic conver-

gence. The unitary transformations are chosen so as to annihilate the pivot elements

aqrv,. We need to show that in addition to this, the pivot elements aprq, are almost
annihilated.

Lemma 4.4.3: Let ¢ < 6/8. If the pivot pair (p,, q,.) E J, where J is defined by

(33),

la_rqrl< 367_

where 7 and A are defined by (23) and (20).

Proof: Consider one pivot pair (Pr, qr) = (P,q). From (28) we can write

. (E_- f{m) (46)
_[pq --" ,

because the unitary transformation Um is chosen to ensure that hqv = 0. We already

have the estimates ]f(ml -< _2/2 and dw >- 36/4 (since c _< 6/8). We need to estimate

First consider c(v_'). We can estimate this from Lemma 4.2.3. Using (29) and the

relation A_+a = S71A_S_,

ollnr+lll_ (r) -Jar
2 sinh 2y_G(v_) + 4 cosh 2yrlm(K m e )

Oyr

Rewrite this as

OIIA_+,II2
Oy,.

+

+

m

4- 2sinh4y_(Id_l 2 4- I_,l =)- 4cosh4y_Z_(_._).

4(sinh_(2(14qI'+ I0,1_,)+ a_) - cosh,_XmCd'_,))

2(sinh 4y, - 4 sinh y,)(ldv, I2 + [_p,l') 4- 4(cosh 4y, - cosh y,)Im(d_,,)

2 sinh 2y,.G_) + 4 cosh 2y,.Im(I/'r(_) e -i'' ) - 4 sinh y,G_ )

The first term is of first order in y_. We estimate it as follows.

4(sinhy_(2(Id.I_+ I¢_,1_)+ G(_°_).cosh y,Zm(d;,¢_))= 4coshy_(-Ic_ - Im(d;_¢_,))
4 cosh 0) -_oo= y_Zm(-K_(_e )

17



wherewehaveusedthe valueof'tanh yr from (12) and (35), noting that Yr is computed

using the elements of A0. The point to note is that this choice of Yr makes the above

term O(_). We can now use the bounds II(_)] < e_]2, G(p_) _< c 2 for all r, as well as

the angle bounds from Lemma 4.3.1. We also use the relation 62 < 2llA0]l 2. Finally
we arrive at the estimate

Using (30),

1011Ar+,ll_ ,_£
0yr I<_ 2711Aol.S_" (47)

1 0liAr+all2 = _2Re(K_)e_,or )+4sinh2yIm(a;pap+e_2,o )
sinh 2y, Oar

+ 2 cosh 2yRe(a_pqa_e-+O, _ d_aqre, ia,).

Here all the:terms are O(e 2) except the last one. But recall how angle ar is chosen

(11). With this choice (o) -;o,Re(c;,, e ) is zero. Using (28),

R, (o) -i°,, (o) -+°,e_c;+e ) = -n_(d;,%+e-'o, - d;_%,_'or) + _(K;+ _ ) = o.

This gives us a second order estimate for the last term as well. Using the bounds on
the angles etc. we arrive at

From Lemma 4.2.3,

Isinh OlIA'+'II2 l_ (48)2y_ Oar I_<811Aol.,_.

Using (47) and (48),

1OllA,.+,II_ 1 OIIA,.+xll2
I_,?1< 1_ au,. I+lsinh2y Oar I-

2

<22tlAoll  .
Recall that the pivots (Pr, q,) form a commuting sequence. Therefore we can move

any shear Sr to the ruth position to get a bound on c_}. Such a permutation does
not affect the matrix A,_. Therefore

2

,Ic(_)I,,-., -< 22lAoll 2_g2 for all r = 1 .. .m.

Now We have to consider the effect of the unitary transformations. The only one we

need to consider is U,,. To see why, consider Cr = ArA_.-A;A_, and C = Aft" __*¢i.

0 = u_ ...u;u;c,,u,v_...v.,,

18



since U;U,. = I. Let (p, q) = (p,_, q,,,). Since the pivots (p,, q,) form a commuting

sequence, the only unitary transformation transformation affecting c_") is U,,. Now

note that U,, does not affect the norm of the block

(c,,%q).
Cqp Cqg

By definition (10) we have the bound ]cii ] __ e 2 for all j. So we can obtain the

following estimate for _q,
2

_q _< 23]lAo1]2_

Again, since we can have any of the pivots (pr, q_) in position m by a permutation
that leaves A invariant, the above bound is true for all pivots (Pr, q_).

Using (46),

Now we use Lemma 4.2.2,

A

Id;,I

111Ao112)_< _(2311Aoll 2 +
2

< 32]]Ao112_.

where we have used 7 > ½and s < ,V8.

(49)

n

4.5 Proof of Theorem 1:

Consider a sweep as defined in (18)

SW = T1D'_T2D2 . . . T,D,. (50)

Here we have assumed that the parallel ordering consists of n commuting se-

quences. The discussion is similar if only n - 1 commuting sequences are involved in

a sweep, and the bounds derived here apply for that case as well.

From condition (24) and Lemma 4.4.2 the maximum value e that IIEII can take

during the sweep is
3-2"6 6

<_n(2.S)"3_--z-___ _ _7. n -< i

19



Now suppose (k,j) ¢ ?, for any z < v + 1. The pair (k,3) cannot be a pivot
pair for the current rotation set (v), so it is either in some Pi for I < v or is not. If

(k,)) _ P_ for any / < v, we use (61) to get the first term of the maximum in (57).
Alternatively, if (k,j) E Pt for some l < v we get the second term of the maximum in

(57). The factor r in (37) must be included because of the diagonal transformation,

which can increase the size of an element by this factor. A similar argument leads to

(59) if (k,j) e P, for some l < v + 1.

Similarly, for iteration (52), we get (60). For (58) the first two terms in the

maximum are obtained as above. We need to consider the additional possibility that

(k,j) E P,.+x. But the pivot elements after the rotation set are bounded by (49), from

Lemma 4.4.3, which leads to the third term in (58). t:3

The following Lemma is similar to one proved by Hansen [12], while discussing

the quadratic convergence of the 3acobi method for symmetric matrices.

Lemma.4.5.2: A solution (fl,, Or) to the recurrence

_'_u+l "" Co max ((cx + c2)fl,,,clfl,, + c2e_},

Ov+1 -- Co max {(Cl + c2)0_,c10,, + c2fl_},

O1 = 0,

where cl > 0 for all i, is given by

_v = C{_--1(Cl JI- C2)V--1_'_I for V = 1,2,... (62)

e, _-1{(ci + c_)_-' _-1= -cl }ill forv=l,2,...

Proof: The proof is by induction. The case v = 1 is easily verified.

the propositions (62) and (63) are true for v - 1,

(63)

Assuming

_'_v+l = n,gmax {(cl+ c_)",
clCc,+ c_)'-_+ _((cl + c_)"-_- c_-'))

= fllc_max {(c1 + c2)V,(cl + c2) v- c_-Xc2)

= _1c_(cl + c_)_.

and

Ov+l = _'_IC_ ITlaX {(el "4-C2){(C1 "Jr" C2) "-1 --c_-l} ,

cl (c,+ c_), (cl+ c2)_- c_}-- fl,_max {(cl + c2)" - _-1

= n1¢ {Cc_+c_)_-cU.

[]
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Now consider the recurrences (57)-(60). We could reduce them to two recurrences

if we didn't have the third term in (58). Then if _x = IIEII], the quantities fl2,,-t

and O2+,-a are upper bounds for w,. and 0r with Co = r, ca = 1.06 and c2 = 4_/6. To

take care of the third term in (58) all we have to ensure is that

c_-i(cl + c2)"-ifll :> 36r'y2¢ for all v > i.

Since flu is monotonically increasing with these values of c_ (r _> 1), we only need to

ensure this for v - 2. We can use _ - n2.8" by Lemma 4.4.2. We get the condition

which is guaranteed by (24).

Now consider 0,, the maximum non pivot element at the end of the sweep.

#. < e2.-t

2.12n23" -
< _" ----g--_he

2n--1 -- 1"062"-I ] 1'21

where we have used _ < 6/8. Substituting the value fll = IIEIII and using e < 6/8 as

well as _ = n(2.8)"llElll from from Lemma 4.4.2 we obtain

_-_11a2._t <_.(3r) =" E, II2.

So the non-pivot elements at the end of the sweep are bounded by the above. The

remaining n off-diagonal pivot elements from the last rotation set are bounded by

(49) so adding the bounds on these elements and the bound above, we get

IIE_II _<KI(A,% 6,r)llE, II2,

where
+ 48.r2n3(3r)2-

IQ = ,6 IIE, II'.
[]

4.6 Proof of Theorem 2:

If A has multiple eigenvalues we can no longer always use the angle bounds from

Lemma 4.3.1, since the pivot pairs need not belong to the set J (33). In Theorem

2 we assume that the parallel ordering used is the modulus ordering (17). We will

assume that n, the order of the matrix, is even. The proof for odd n is similar.
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Figure 2:

Consider 2n - 3 rotation sets using a modulus ordering

TI Da T2 D2 . . . T,-I D,,-1D, . . . T2,,-3D2,,-3. (64)
.o

Note that we consider 2n - 3 rotation sets even though one sweep of the modulus

ordering involves only n rotation sets. We are including some of the rotation sets of

the next sweep. Fig.2 illustrates the rotation sets we consider for the case n = 6.

From (25) and Lemma 4.4.2, e, the maximum value of [[E[] during the application

of two sweeps of rotation sets to Ax (2n rotation sets) is

e < n(4.6) 2" C' "5 _ (:") _ =
- k23] 8n 8"

Notation: Ax is the matrix before applying the two sweeps of rotation sets. For

v= I_2,...,

fi,, = D_'Tj'A,,, (65)

fi_ = fiq, T,.D,,, (66)

A_+x = fi,_.

We define an 'antidiagonal' X_ as

x_ = {(k,j)[k + j = v}.

Let P_ be the pivot sequence used by the vth rotation set. ordering. Then it is easily

shown that (refer to Fig.2)

P., = X_,+2 U X.+.,+2 if v < n.

P_ = X_+2 U X_-.+2 if v > n.

We partition E_, the off diagonal part of A_ as follows.

E,, = B_ + R_ + F_,

23



Figure 3: Case1

where

Id_)_ ) F,, xJki J"B_'-lvkjj, R_--{r }, =

k+j<v+2

otherwise

k+j=v+2

otherwise

k+j>v+2

otherwise

£:, and/_ are similarly partitioned.

We will prove by induction on v that there exists My independent of ][EI[[ such

that

IIB_lls < M_IIElll 2. (67)

For v = 1, IIBIlI_ = 0 so the proposition is true. We assume it is true for v.

Case 1: t, < n. The partition of E_ into B_, R_ and F_ is shown in Fig.3. First

consider the pivots in X,+_+2. It is easy to see that these pivots cannot affect the

elements of B_, since they couple elements of F_ among themselves. Now consider

the pivots in X_-

Consider the transformation (65).. Consider an element bkj of B_. It is coupled

with another element a£; by a shear and a unitary transformation. Let the pivot pair

of the transformation be (p, q). Let x and y be the angles involved in the unitary and

shear transformations respectively.

1. ak_ = b_3 E B_.

Let b_j be the value of the element after the shear and unitary transformations,

[b'ki[ < ([cosz[[coshy[ + [sinx[[sinhy[)[bkj[ +

(Isin xll coshyl + Icos zll sinh yl)lb_l. " (68)
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Using the anglebounds from (32) we get

lb_jI < '/g(Ibks[ + [b_31)-

After the diagonal transformation we get

II,,il _< rvff(lb_il + Ibtj[). (69)

2. a_3= h3 _ F_. and (p,q) ¢ J.
It is evident that in this case k, k _> p and j,) < q. Since the matrix has been

permuted so that diagonal elements affiliated to equal eigenvalues occupy adjacent

positions on the diagonal, it has the structure (27). Therefore bkj lies in one of the

diagonal blocks E, in the partition (27), and by Lemma 4.2.1

1 2
-" IZ,,_..,l-<_ • (70)

3. a_j = ft3 E F_. and (p, q) E J.

We can use the angle bounds from Lemma 4.3.1 and (68) to show that

t 4_

Ibkil < 1.061bkjl + ylfk)l-

Further, since Ih;I -<_,
4_ 2

Ib£;I_<t.O61bJ,jl + -g-.

After the diagonal transformation

4e 2 .
IZ,kjl _<_{1.O61b,jl+ --T._.

Adding (69), (70) and (71) for all 7)ki we get a bound for IIB_IIr,

l]._'vllr.< 7"(4.6[]B,,]IE + n'e '(4 + 6)}- 26 "

l

An identical argument can be used to show a bound for iteration (66),

[[/_llr. _< r{4.6[l/_llr.+n2e2(42_6)- } .

_< r_ {22[[B_llr_ + 3n2e_--_).

(7i)
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.

Figure 4: Case 2

Now we consider B_+I. This includes elements of _ as well as those of/_,,. But

using Lernn_a 4.4.3 and accounting for the diagonal transformation,

where

_'kj < 36"r2rU_

Adding the bound for/_, that we get from this to the bound on/_,

IIB_+IlI_ < r 2(2211Bdl_ + Q_2),

Q=(3n2(4+6) o'_)_- + 36n-_- .

(72)

(73)

Case 2: v > n. Refer to Fig.4. First consider the pivots in X_-,+2. These only

can couple elements of B_ with other elements of B_. Using the angle bounds from

(32) it is easily seen that this can only increase the size of [[B_[[r. by a factor of 12.

The analysis for the pivots in X_+2 is identical as that for the case v < n. Taking

into account the factor of 12 that can arise due to the pivots in X_-,+2 we get

[[B_+,II_ < 12r 2 {22[[B_[l_.+ Q_2}.

Solving this recurrence,
t

IIB_II_ < (264v_)"12v_Qe _.

After 2n - 3 rotation sets, B_ = E_. We have considered 2n - 3 rotation sets in

the sweep. We have to consider 3 more to complete two sweeps. In these 3 rotation

sets, IlZll_ can grow by a factor of only (4.6) 3, by Lemma 4.4.1. Therefore, using the

fact that IIEll _<II/_ll_ and the value E = n(4.6)2"llElll,

IIENII _<K2(A,g,n)IIE_II 2,

26



t
i

22

2O

18

]6

14

12

I0

$

6
3

.-*_'_" ..-'e'_'°'" .

!

4 5 6 7 8

1o8 n

%

Figure 5: Results for Random matrices.

where

I{2 ----(4.6)3(3'_'2)2"12n2T_.
4

0.

5 Numerical Results:

We present resultsof experiments with the parMlel norm reducing algorithm (PNRJ)

for a variety of test matrices. For the convergence test (19) we use e -- 10-Is, and

the value _"- 108 is used in (14) to bound the diagonal transformations. In Fig.5
!

resultsare presented for random real matrices. The number of sweeps required for

convergence (according to the criterion(19))isshown as a function of log2n,where n

isthe order of the matrix. The resultsfor random complex matrices were similar.The

dotted llneisa rdferencelineof slope 2.8. So we can empiricallystate that algorithm

PNR.J requires 2.81og_n sweeps to converge, for random matrices.

In Fig.5 We compare the orderof convergence of algorithm PNRJ with a Schur

type Jacobi method, in which the non-unitary transformations are omitt_ed (PSU).

The latterisvery similarto the method proposed by Eberlein [6].We consider results
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Figure 6: Order of Convergence (30 x 30 Random Matrix)

for a 30 x 30 random matrix. We plot the logarithm (base 2) of the norm of the lower

triangle of the matrix before each sweep (I[LII) against the value after each sweep

(]IL'I[). The slope of the plot indicates the order of convergence. Two reference

lines of slopes one and two are also shown (dotted lines). Notice that the order of

convergence is two for the norm reducing method but only one for the purely unitary
method.

The convergence behavior of Jacobi-like methods generally deteriorates as the

matrix A becomes increasingly non-normal. We generated increasingly non-normal

matrices using the method of Stewart [25]. These matrices have the form

A = U(,D ..F aF)U r (74)

where U is unitary, D - diag(1, 2,..., n) and F is a random strictly upper triangular

matrix. The parameter a controls the non-normality of the matrix A.

In Table 1 we present results for 24 × 24 Stewart matrices with different values

of a. The degradation in the convergence rates is present for both PSU and PNRJ,

but PNRJ degrades more slowly. In fact for a -- 8 PSU did not converge. We

observed ultimate quadratic convergence for PNRJ in all cases, though the onset of

this behavior is delayed as a increases.

28



Ot

1

2

4

8

# sweeps
PNRJ PSU

8 17

9 28

12 36

17 oo

Table 1: Performance for 24 x 24 Stewart matrices.

°:

# sweeps

n PNRJ PSU

8 12 20

12 23 47

Table 2: Performance for Frank matrices.

Frank matrices B. = {bpq} are defined by

otherwiset

The smaller eigenvalues of these matrices are known to be very ill-conditioned. Results
for Frank matrices are shown in Table 2.

In Table 3 we report the accuracy of the computed eigenvalues and eigenvectors.

Results are shown for all of the matrices considered above. 'Max Error' is the maxi-

mum error in the computed eigenvalues (with the eigenvalues computed by EISPACK

taken as the true values). P is the matrix of normalized eigenvectors computed by

PNRJ, V is the matrix of normalized eigenvectors computed by EISPACK, and A is

the diagonal matrix of eigenvalues computed by PNRJ.

We first note that the computed normalized eigenvector matrix P has condition

comparable to the eigenvector matrix V. obtained from EISPACK. Also, the residual

[]AP - PAIl2 is small, indicating that the computed eigenvalue-eigenvector pair is a

good approximation. The error in the computed eigenvalues degrades with increasing

non-normality of the matrices, as is to be expected. For the extremely ill-conditioned

Frank matrix of order 12, the ill-conditioned eigenvalues differ from those computed

by EISPACK by a large amount. However, it was noticed that the well-conditioned

eigenvalues were computed with low error.

Although the unitary transformations (5) were chosen to annihilateonly the ele-

ments aqp in the lower triangle of the matrix, the final matrix was in fact very close to
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A Max Error [[AP -- PAIl2 cond(P) cond(V)

30 x 30

Random Matrix 3.55e-14 4.18e-14 6.46e+00 6.86e+00

24 x 24

Stewart Matrices

a--I

a--2

----4

_--8

Frank Matrices

n----8

n=12

1.10e-13

1.49e-13

1.03e-12

1.56e-i0

6.06e-II

1.64e-06

1.09e-13

2.00e-13

1.72e-ll

2.13e-13

1.07e-12

9.80e-14

8.81e+00

4.80e+01

1.13e+03

5.41e+05

7.89e+03

1.48e+08

1.00e+01

5.64e+01

1.20e+03

5.28e+05

8.41e+03

1.49e+08

Table 3: Accuracy of Computed Eigenvalues and Eigenvectors.

diagonal in aU the cases we ,trie_is is to be expected for diagonalizable matrices

since the norm-reducing tra_fo_'_ations move the matrix toward a normal matrix.

However, even for nearly, defective matrices, the algorithm actually diagonalizes a

nearby diagonalizable matri_'_So 'the final matrix is still diagonal, except that the

computed eigenvalues have larger errors. Therefore, in this algorithm the eigenvec-

torn can be read off" from the columns of the matrix obtained by accumulating the

transformation matrices T_. This is of course not so for the Schur type methods.

6 Discussion and Conclusions:

We are unable to prove global convergence of algorithm PNRJ. The difficultycomes

from the factthat we cannot prov e that the parallelalgorithm always causes a decrease

in [[A[I,as well as from the cyclicchoice of the pivots. The global convergence proof

for Eberlein'snorm reducing method [5]as wellas that for Sameh's parallelalgorithm

for real non-symmetric matrices relieson the provable norm reduction property as

well as an optimal choice of pivots.

Optimal pivoting strategies(which _equire searching the elements of the commu-

tator C at each iteration)are difficultto implement efficientlyand may not be worth

doing merely to obtain the global convergence proof, when cyclicstrategiesperform

just as well in practice.

Regarding the reduction in IIAi[,although We are unable to prove itin general for

algorithm PNRJ, we observed that in allthe experiments described in the previous

section,the norm [[A[[never increased aftera rotation set and invariably,decreased

(except during the lastfew sweeps, when the matrix was already normal). Therefore
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we conclude that the question of global convergence of algorithm PNRJ isstillopen.

Various implementation issuesremain to be investigated in order t0improve the

algorithm further. In particular,the broadcasting ofin_rmation isan undesirable fea-

ture because communication ofthissortiscostlyin allparallelcomputers. However, if

we consider the proof of quadratic convergence we notice that the global information

does not play a significantrole. Therefore we could consider not computing global

information during the lateriterationswhich _would reduce the cost of computation

as well as communication in the laterstages of the iteration.Experiments along these

linesare currently in progress. Another issue that needs to be considered isa block

version of the algorithm similarto block 9acobi methods for the hermitian eigenvalue

problem [1,24].

In spite of using non unitary transformations.,PNRJ computes eigenvalues and

eigenvectors with accuracy comparable to that of EISPACK. This feature isinherited

from the norm reducing methods on which PNRJ is based [5,21]. To explain the

stabilityof these methods, we can argue that the iteratesAk are moving closerto

a normal matrix and therefore their eigenproblem is becoming successively better

conditioned. Further, as long as only small norm similaritytransformations are used,

the finalmatrix willbe exactly similarto a matrix that iscloseto the originalmatrix

[29].However, a formal error analysisproving the stabilityof norm-reducing methods

does not appear to have been carriedout, and isan area open forfurther investigation.

To compare algorithm PNRJ with the QR algorithm let us consider operation

counts. The singleshifthessenberg QR algorithm for general complex matrices [11]

computes the Schur decomposition in approximately 26n 3 complex floatingpoint op-

erations.Here we have used the empirical observation that usually about 3 iterations

are required to decouple one eigenvalue. On the other hand, on a sequentialmachine,

PNRJ requires about 9n3 operations for one sweep. So for random matrices, PNRJ

isslower than the QR algorithm by a factor of about log2n. However on a parallel

computer the situation isnot so clear since efficientparallelimplementations of the

QR algorithm (likeO(n log_n) time using O(n 2) processors) are not known. This is

an area of ongoing research.

As described in the previous section, algorithm PNRJ slows clown as we move to

matrices that are increasingly non normal. Although the QR algorithm also displays

thisdegradation, the effectof non normality ismuch lesspronounced. Understanding

the effectof non normality on algorithm PNRJ in more detailis also an important

topic for research.

FinaIIy_£verslonof tTnealgorithm _a_ us_ only r_[ arithmetic for real matrices

isdesirable. Real Jacobi-likemethods that _nvergequaSra_tically for Certain classes

of matrices have been investigated by Veselic [27,28]. Sameh's algorithm [22]is a

parallelalgorithm for real matrices. Work isin progress to develop a quadratically

convergent parallelalgorithm for realmatrices.

To summarize, we have introduced algorithm PNRJ, a parallelJacobi likealgo-
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rithm that diagonalizes a diagonalizable matrix. It has been proved that the algorithm

converges quadratically for any parallel ordering of the pivots if the matrix has dis-

tinct eigenvalues. In the presence of multiple eigenvalues quadratic convergence can

be shown if a particular parallel ordering, the modulus ordering, is used to choose the

pivots.

Experimental results confirm the ultimate quadratic convergence of the algorithm,

though the onset of quadratic convergence is delayed with increasing non-normality

of the matrices. For nearly defective matrices the well conditioned eigenvalues are

computed accurately, though the convergence is also delayed in this case. For random

matrices the algorithm exhibits an improved rate of convergence compared to some

other parallel Jacobi methods for the unsymmetric eigenvalue problem.

Algorithm PNR3 can be implemented using n2/4 processors and performs one

'sweep' in O(nlogn) time. For random matrices, it is empirically observed that

O(log n) sweeps are necessary for convergence.
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